

A Large-Scale Empirical Study of Geotagging Behavior on Twitter

Binxuan Huang binxuanh@cs.cmu.edu Kathleen M. Carley kathleen.carley@cs.cmu.edu

Slides: <u>https://binxuan.github.io/files/asonam_2019.pdf</u>

© 2019 CASOS, Director Kathleen M. Carley

Outline

- Introduction
- Data collection
- Tweet-level analysis
- User-level analysis
- Graph-level analysis

Outline

- Introduction
- Data collection
- Tweet-level analysis
- User-level analysis
- Graph-level analysis

Introduction

- Location sharing behaviors widely exist in social network websites
 - Users post home locations in their profiles.
 - People mention where they are in their posts.
 - Geotag: directly tag posts either with a place id or with a precise geo-coordinates.
- Geotagging behaviors on twitter:
 - Place-tag: tag a tweet with a place (a geo bounding box) --- country, admin, city, neighborhood, poi (place of interest)
 - Coordinates-tag: tag a tweet with precise geo-coordinates.

Introduction

- Use geotagged users' opinions to infer non-geotagged local users' opinions.
 - RQ1: What if different users have different geotagging preferences? Are there any differences in terms of geotagging behavior among different users?
- Learn location specific features from geotagged tweets [7], based on information such as profile location.
 - RQ2: Are users who use geotags and who do not are equally likely to report their home locations in profiles? Is there any correlation between the geotagging behavior and the behavior of reporting location in profile?
- Utilize user's friends' locations to better geolocate this user [8].
 - If non-geotagged users tend to connect to similar non-geotagged users, then it would be harder to infer their locations based on their social ties.
 - **RQ3**: Is there any homophily effect between friends in terms of geotagging preference?

Outline

- Introduction
- Data collection
- Tweet-level analysis
- User-level analysis
- Graph-level analysis

Data collection

- Step 1: use twitter sample streaming API to get real-time tweets without any filter parameters.
- Step 2: Extract users in the sampled data and collect their recent 3200 tweets and following friends.
- Step 3: Take the users both with following data and timeline data as the final research objects.

Data collection

• Data summary

# of Tweets	# of Tweeters	Following ties	Place-tagged tweets	Coordinates-tagged tweets
41,267,348,020	19,984,064	4,402,458,603	724,933,445 (1.76%)	228,606,700 (0.55%)

About 2.31% of tweets are geotagged, slightly higher than previous estimation [1]

Outline

- Introduction
- Data collection
- Tweet-level analysis
- User-level analysis
- Graph-level analysis

CASOS

Tweet-level Analysis

	source	# of Tweets	# of non- geotaged tweets	# of Place-tagged Tweet	# of Coordinates- tagged Tweets
y	Twitter for iPhone	16,161,407,831	15,716,820,447 (97.25%)	393,059,787 (2.43%)	51,527,597 (0.32%)
	Twitter for Android	11,938,888,612	11,677,533,121 (97.81%)	219,107,978 (1.84%)	42,247,513 (0.35%)
_	Twitter Web Client	4,184,897,568	4,088,127,646 (97.69%)	96,643,283 (2.31%)	126,639 (0%)
	twittbot.net	916,067,510	916,067,510 (100%)	0	0
	Facebook	769,543,040	769,543,040 (100%)	0	0
	Twitter for iPad	633,139,301	624,738,931 (98.67%)	6,979,518 (1.10%)	1,420,852 (0.22%)
	TweetDeck	526,790,924	526,711,888 (99.98%)	25,725 (0)	53,311 (0.01%)
	Twitter Lite	500,813,124	500,696,593 (aa ar)	64 (n)	116,467 (0.02%)
l	Instagram	304,274,973	246,133,428 (80,89%)	1,470 (0)	58,140,075 (19.11%)
© 201	Others	5,331,525,137	5,247,435,271 (98,42)	9,115,620	74,974,246 (1.41%)

 Geotagging distribution by source

Tweet-level Analysis

% of Coordinates-tagged tweets

Distribution of coordinates-tagged tweets by source

© 2019 CASOS, Director Kathleen M. Carley

CA

Tweet-level Analysis

Place-type distribution among place-tagged tweets

	source	country	admin	city	neighborhood	poi	1
	Twitter for iPhone	6,448,752 (1.64%)	47,820,014 (12.17%)	336,007,216 (85.49%)	269,817 (0.07%)	2,513,988 (0.64%)	
_	Twitter for Android	5,633,166 (2.57%)	23,219,855 (10.60%)	188,822,442 (86.18%)	278,991 (0.13%)	1,153,524 (0.53%)	
	Twitter Web Client	14,180,029 (14.67%)	15,557,789 (16.10%)	66,777,976 (69.10%)	127,489 (0.13%)	0 (0%)	l
	Iwitter for iPad	າ44,ວອ <i>າ</i> (2.07%)	047,221 (9.27%)	0, 131,341 (87.85%)	9,407 (0.13%)	40,752 (0.67%)	
	Tweetbot for iOS	77,587 (1.40%)	617,288 (11.13%)	3,604,772 (64.98%)	1,247,505 (22.49%)	0 (0%)	
	Tweetbot for Mac	14,989 (0.95%)	154,566 (9.84%)	923,905 (58.79%)	477,944 (30.42%)	0 (0%)	
r A	Others	94,431 (2 63%)	424,966 (11 82%)	2,553,342 (71 01%)	516,441 (14 36%)	6,540 (0 18%)	
	sum	26,578,562 (3.67%)	88,287,133 (12.18%)	603,897,289 (83.30%)	2,449,650 (0.34%)	3,720,804 (0.51%)	

Tweet-level Analysis

TABLE V: Percentages of coordinates-tagged tweets for countries (top 15).

- # of coordinates-tagged # of geotagged country 61,488,648 (19.20%) United States 320,268,573 19,509,860 (16.56%) Brazil 117,794,897 United Kingdom 14,585,781 (24.32%) 59,983,328 13,406,333 (25.86%) Japan 51,847,289 39,744,563 6,350,980 (15.98%) Argentina 19,037,195 (52.90%) Turkey 35,989,555 Philippines 29,031,714 4,696,974 (16.18%) Mexico 24,317,203 8,132,105 (33.44%) Spain 6,114,047 (27.04%) 22,608,661 22,036,169 Malaysia 8,096,642 (36.74%) 12,357,982 (66.51%) Indonesia 18,581,142 2,690,101 (16.76%) 16,049,418 France 2,987,905 (22.73%) 13,142,453 Canada Russia 11,241,015 2,844,891 (25.31%) 1,568,910 (14.62%) Saudi Arabia 10,728,248 © 2019 CASOS, Dire
- Coordinates tagging percentage by country

Tweet-level Analysis

TABLE IV: Distributions of geotags for tweets with different tweet languages (top 15)

 Geotagging distribution by tweet lang.

Lang.	Non-geotagged	Place-tagged	Coordinates-tagged
English	14,209,166.056 (97.04%)	330,133,459 (2.25%)	103,425,905 (0.71%)
Japanese	7,920,019,090 (99.36%)	37,943,333 (0.48%)	13,167,513 (0.17%)
Spanish	4,405,421,261 (97.39%)	89.268.301 (1.97%)	28.635.593 (0.63%)
Arabic	3.063.691.725 (99.29%)	18.598.541 (0.60%)	3.335.846 (0.11%)
Portuguese	2,366,206,011 (95.67%)	91,288,151 (3.69%)	15,848,111 (0.64%)
und	2,327,452,586 (97.38%)	53.030.818 (2.22%)	9.673.783 (0.40%)
Korean	1,013,674,569 (99.86%)	976,321 (0.10%)	436,763 (0.04%)
French	820.763.421 (98.05%)	13.489.214 (1.61%)	2.834.209 (0.34%)
Indonesian	778,781,264 (96.02%)	16.621.968 (2.05%)	15,651,480 (1.93%)
Thai	729.496.967 (99.00%)	5.588.546 (0.76%)	1.748.479 (0.24%)
Turkish	670,097,929 (95.38%)	16,085,714 (2.29%)	16,352,663 (2.33%)
Tagalog	473,457,971 (96.02%)	16,112,019 (3.27%)	3,498,319 (0.71%)
Russian	320,550,743 (96.08%)	10,132,568 (3.04%)	2,929,779 (0.88%)
Italian	229,578,445 (97.03%)	5,093,448 (2.15%)	1,936,471 (0.82%)
German	162,995,168 (97.57%)	2,847,769 (1.70%)	1,214,755 (0.73%)

Outline

- Introduction
- Data collection
- Tweet-level analysis
- User-level analysis
- Graph-level analysis

User-level geotagging is more prevalent

# of Tweeters		Tweeters with at least one geotagged tweets	Tweeters with at least one precise coordinates-tag
	19,984,064	4,871,784 (24.38%)	2,584,042 (12.93%)

- Divide users into categories based on:
 - 1. Source
 - 2. Language
 - 3. Profile location
 - Do not provide profile location
 - Provide meaningful profile location (We use Geonames to recognize locations)
 - Provide meaningless profile location (cannot be detected by Geonames)
- Look at the percentage of place tags and coordinates tags by categories.

Again, the geotagging distributions differ because of the settings of different platforms

TABLE VI: The geotagging distributions for users with different user sources (Top 10).

User source	Non-geotagged	Place-tagged	Coordinates-tagged
Twitter for iPhone	5,741,431 (70.80%)	1,242,823 (15.33%)	1,125,263 (13.88%)
Twitter for Android	4,869,846 (76.08%)	670,206 (10.47%)	860,953 (13.45%)
Twitter Web Client	1,497,191 (77.99%)	214,419 (11.17%)	208,006 (10.84%)
Facebook	289,930 (74.43%)	29,737 (7.63%)	69,869 (17.94%)
twittbot.net	301,390 (99.18%)	1,076 (0.35%)	1,408 (0.46%)
Twitter for iPad	210,894 (82.99%)	19,759 (7.78%)	23,482 (9.24%)
TweetDeck	215,006 (85.36%)	16,709 (6.63%)	20,163 (8.01%)
Twitter Lite	233,175 (93.24%)	9,635 (3.85%)	7,262 (2.90%)
Google	104.839 (86.39%)	5.906 (4.87%)	10.608 (8.74%)
Instagram	58,931 (55.44%)	978 (0.92%)	46,391 (43.64%)

1505

C

User-level analysis

Generally the more twitter sources an used the more likely he/she would be geotagged.

TABLE VII: Geotagging distributions for different user languages (top 10).

- We can find geo-coordinates for more than 30% of people who speak Indonesian
- Less than 3% of Korean speaker have ever used geotags before.

User lang.	non-geotagged	place-tagged	coordinates-tagged
English	5,232,717	1,157,694	1,109,592
English	(69 77%)	(15 44%)	(14 79%)
Innanana	3,539,998	204,787	178,761
Japanese	(90.22%)	(5.22%)	(4.56%)
Smanish	1,521,361	278,065	483,997
Spanish	(66.63%)	(12.18%)	(21.20%)
Arabic	1,520,239	108,505	88,238
Alabic	(87.08%)	(7.12%)	(5.79%)
Dortuguaga	806,927	218,648	232,904
Portuguese	(64.12%)	(17.37%)	(18.51%)
Voreen	538,095	9,702	0,384
Korean	(97.06%)	(1.75%)	(1.19%)
Turkish	511,740	49,714	109,071
TUIKISII	(66.17%)	(10.55%)	(23.28%)
Franch	345,166	59,595	51,531
Fiench	(75.65%)	(13.06%)	(11.29%)
	301,935	33,497	47,283
Inai	(78.89%)	(8.75%)	(12.35%)
Independent	217,667	34,889	125,771
Indonesian	(57.53%)	(9.22%)	(33.24%)

© 2019 CASOS, Director Kathleen M. Carley

• Among these 20 million users, 38.6% of them do not provide location in their profile. Only 41.2% of them provide recognizable location by Geonames.

Profile location type	Nongeotagged	Place-tagged	Coordinates-tagged
Empty	6,489,046 (84.1%)	625,701 (8.1%)	602,036 (7.8%)
Unrecognized	3,111,036 (77.1%)	446,833 (11.1%)	477,919 (11.8%)
Recognized by Geonames	5,512,198 (67.0%)	1,215,208 (14.8%)	1,504,087 (18.3%)

Outline

- Introduction
- Data collection
- Tweet-level analysis
- User-level analysis
- Graph-level analysis

Graph-level analysis

• When an user's follower/followee number reaches a certain threshold, he/she is more conservative for sharing real-time location.

Graph-level analysis

- Location sharing homophily:
 - If user's following friends frequently share their locations, will this user also share his/her location via geotagging?

• Geotagged users are more likely to have geotagged followers/followees

Coordinates-tagged users are more likely to have Coordinates-tagged followers/followees

• An ego's chance of being geotagged increased more than 6 times if at least one of his/her alter is geotagged.

Alter	P(Ego is geotagged at least one alter is geotagged)	P(Ego is geotagged no alter is geotagged)	Relative increase
follower	28.70%	4.17%	6.88
followee	26.06%	1.76%	14.80
friend	30.60%	4.40%	6.95

• Similar thing all happens for coordinates-tagging behavior

	P(Ego is coordinates- tagged at least one alter is coordinates- tagged)	P(Ego is coordinates- tagged no alter is coordinates-tagged)	Relative increase
follower	16.74%	2.75%	6.08
followee	14.82%	1.22%	12.11
friend	18.01%	2.97%	6.05

Conclusion

- Are there any differences in terms of geotagging behavior among different users?
 - Yes, factors include source, language, original country
 - Geotagged content may not be representative of public opinion in the corresponding region.
- Is there any correlation between reporting location and geotagging bahavior?
 - Users who self-report their location in profile are much more likely to use geotags.
 - Geolocation prediction systems may be less useful than previously thought, because a disproportionate number of users that use geotags also report locations.
- Is there any homophily effect between friends in terms of geotagging preference?
 - Yes, an ego's chance of being geotagged increased more than 6 times if at least one of his/her alter is geotagged.

SOS If non-geotagged users tend to cluster together, then it becomes harder to find nongeotagged users' location based on the information from their friends.

© 2019 CASOS, Director Kathleen M. Carley

References

[1] M. Graham, S. A. Hale, and D. Gaffney, "Where in the world are you? geolocation and language identification in twitter," The Professional Geographer, vol. 66, no. 4, pp. 568–578, 2014.

[2] B. Hu and M. Ester, "Spatial topic modeling in online social media for location recommendation," in Proceedings of the 7th ACM conference on Recommender systems. ACM, 2013, pp. 25–32.

[3] Y. Wei and L. Singh, "Location-based event detection using geotagged semantic graphs," in KDD Workshop Mining and Learning with Graphs, 2017.

[4] A. Crooks, A. Croitoru, A. Stefanidis, and J. Radzikowski, "# earthquake: Twitter as a distributed sensor system," Transactions in GIS, vol. 17, no. 1, pp. 124–147, 2013.

[5] M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a feather: Homophily in social networks," Annual review of sociology, vol. 27, no. 1, pp. 415–444, 2001.

[6] M. J. Widener and W. Li, "Using geolocated twitter data to monitor the prevalence of healthy and unhealthy food references across the us," Applied Geography, vol. 54, pp. 189–197, 2014.

References

[7] B. Huang and K. M. Carley, "On predicting geolocation of tweets using convolutional neural networks," in International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Springer, 2017, pp. 281–291
[8] L. Backstrom, E. Sun, and C. Marlow, "Find me if you can: improving geographical prediction with social and spatial proximity," in Proceedings of the 19th international conference on World wide web. ACM, 2010, pp. 61–70.

• Thanks

binxuanh@cs.cmu.edu
http://binxuan.github.io

© 2019 CASOS, Director Kathleen M. Carley