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Introduction

o Document-level sentiment classification
— Identify the overall sentiment polarity of a document as positive, negative, or neutral.

— Many times a document is mixed with different aspects and opinions.

* “"The food in this restaurant is excellent, but the service is not good.”

— Jiang et al. examined that 40% of sentiment classification errors come from not
considering aspects[1].
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Introduction

o Aspect level sentiment classification

— Identify the sentiment polarity for each aspect in one document.

— “The food in this restaurant is excellent, but the service is not good.”

A J
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i
e Formal problem definition of Aspect level sentiment classification

e Given a sentence s = [wq, wy, ..., w; ..., wj, ...wp] and an aspect target t = [w;, ..., w;j], the
goal is to classify the sentiment as positive, negative, or neutral.

The food in this restaurant is excellent, but the service is not good. food +1
The food in this restaurant is excellent, but the service is not good. service -1
Boot time is super fast, around anywhere from 35 seconds to 1 Boot +1
minutes. time
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e Components in the model
— Word embedding layer

— LSTM

— Attention over Attention(AOA)

— Final classification layer
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e Components in the model
— Word embedding layer[2]

e Treat each word as a low-dimensional real-value vector R<.
e Similar words have similar vectors.

e A sentence of length n can be represented as a sequence of vectors [v, ..., v,,] € R™"*¢

e Similarly, an aspect of length m can be represented as [v;, ..., v;] € Rmxad
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e Components in the model
— LSTM layer[3]: we use LSTM to get the semantic meaning of texts.

The repeating module in an LSTM contains four interacting layers.
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e Components in the model
— LSTM layer: we use LSTM to get the semantic meaning of texts.
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o AOA layer[4]: generate an attention vector from aspect hidden states to
indicate important words in the sentence.

— From previous LSTM layer, we get two matrices hs € R™<24 and h; € R™<2d, Each row in
these matrices represent the semantic meaning of one word.

- I = hg-h{ € R™™, [;; is the interaction between word; in sentence and word; in
aspect.

— We first row-wise normalize I with softmax operation, then do a column-wise average to
get f € R™, B indicates important parts in the aspect term.

— We apply column-wise normailization on I and get «
— Final sentence attentionis y = a - BT € R®
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e AOA layer: generate an attention vector from aspect hidden states to

indicate important words in the sentence.
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e Final classification
— The classification feature isr = h! -y € R?P

— The probability of sentiment label c is:
exp(W-r+b),

* P(y - C) - Siexp(W-r+b)l-
 Cross-entropy loss = =Y, > . I(y = c)logP(y = ¢) + /1||t9||2

— Minimize the loss function with regard to all the parameters.
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e Two domain-specific datasets

Experiments

Dataset Positive | Neutral | Negative
Laptop-Train 994 464 870
Laptop-Test 341 169 128
Restaurant-Train | 2164 637 807
Restaurant-Test | 728 196 196

Table 1: Statistics of the datasets from SemEval 2014

Task 4.
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e Comparison results

Table 2. Comparison results. For our method, we run it 10 times and show best (mean==std)”.

Experiments
e

Methods Restaurant Laptop

TD-LSTM [24] 0.756 0.681

AT-LSTM [29] |0.762 0.689

ATAE-LSTM [29]]0.772 0.687

IAN [12] 0.786 0.721

AOA-LSTM 0.812 (0.79740.008)|0.745 (0.726+0.008)

Performance of these baselines are cited from their original papers.
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Experiments

Aspect Sentence Ans./Pred. |
e (Case study |
appetizers 0/0 10
the appelizers are ok but the WIVice ©» sdow
service - -1/-1 —
the appetizers are ok bt the sarvice & slow
06
food . +1/+1
04
great food but the service was dreadful !
. 0.2
service - -1/-1
great food but the service was dreadful ! 0.0
L] O a1

hoot ume Tt —— » el RPN

&l wvw e Toe &) wconds W i anete

Table 3: Examples of final attention weights for sentences. The color depth denotes the importance degree of the
weight in attention vector .
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