

# **Aspect Level Sentiment Classification with Attention-over-Attention Neural Networks**

Binxuan Huang Yanglan Ou Kathleen M. Carley



© 2018 CASOS, Director Kathleen M. Carley



# Introduction

- Document-level sentiment classification
  - Identify the overall sentiment polarity of a document as positive, negative, or neutral.
  - Many times a document is mixed with different aspects and opinions.
    - "The food in this restaurant is excellent, but the service is not good."
  - Jiang et al. examined that 40% of sentiment classification errors come from not considering aspects[1].





# Introduction

- Aspect level sentiment classification
  - Identify the sentiment polarity for each aspect in one document.

– "The food in this restaurant is excellent, but the service is not good."





### Introduction

- Formal problem definition of Aspect level sentiment classification
  - Given a sentence  $s = [w_1, w_2, ..., w_i, ..., w_j, ..., w_n]$  and an aspect target  $t = [w_i, ..., w_j]$ , the goal is to classify the sentiment as positive, negative, or neutral.

| Sentences                                                              | Aspects      | Sentiment |
|------------------------------------------------------------------------|--------------|-----------|
| The food in this restaurant is excellent, but the service is not good. | food         | +1        |
| The food in this restaurant is excellent, but the service is not good. | service      | -1        |
| Boot time is super fast, around anywhere from 35 seconds to 1 minutes. | Boot<br>time | +1        |







- Components in the model
  - Word embedding layer
  - LSTM
  - Attention over Attention(AOA)
  - Final classification layer













- Components in the model
  - Word embedding layer[2]
    - Treat each word as a low-dimensional real-value vector  $R^d$ .
    - Similar words have similar vectors.
    - A sentence of length n can be represented as a sequence of vectors  $[v_1, ..., v_n] \in \mathbb{R}^{n \times d}$
    - Similarly, an aspect of length m can be represented as  $[v_i, ..., v_j] \in \mathbb{R}^{m \times d}$







- Components in the model
  - LSTM layer[3]: we use LSTM to get the semantic meaning of texts.







- Components in the model
  - LSTM layer: we use LSTM to get the semantic meaning of texts.





### Method

- AOA layer[4]: generate an attention vector from aspect hidden states to indicate important words in the sentence.
  - From previous LSTM layer, we get two matrices  $h_s \in \mathbb{R}^{n \times 2d}$  and  $h_t \in \mathbb{R}^{m \times 2d}$ . Each row in these matrices represent the semantic meaning of one word.
  - $I = h_s \cdot h_t^T \in \mathbb{R}^{n \times m}$ ,  $I_{ij}$  is the interaction between  $word_i$  in sentence and  $word_j$  in aspect.
  - We first row-wise normalize I with softmax operation, then do a column-wise average to get  $\beta \in \mathbb{R}^m$ .  $\beta$  indicates important parts in the aspect term.
  - We apply column-wise normailization on I and get  $\alpha$
  - Final sentence attention is  $\gamma = \alpha \cdot \beta^T \in \mathbb{R}^n$







• AOA layer: generate an attention vector from aspect hidden states to indicate important words in the sentence.





#### Method

- Final classification
  - The classification feature is  $r = h_s^T \cdot \gamma \in R^{2D}$
  - The probability of sentiment label c is:

• 
$$P(y = c) = \frac{\exp(W \cdot r + b)_c}{\sum_i \exp(W \cdot r + b)_i}$$

- Cross-entropy loss =  $-\sum_{s,a} \sum_{c} I(y = c) log P(y = c) + \lambda ||\theta||^2$
- Minimize the loss function with regard to all the parameters.







• Two domain-specific datasets

| Dataset          | Positive | Neutral | Negative |
|------------------|----------|---------|----------|
| Laptop-Train     | 994      | 464     | 870      |
| Laptop-Test      | 341      | 169     | 128      |
| Restaurant-Train | 2164     | 637     | 807      |
| Restaurant-Test  | 728      | 196     | 196      |

Table 1: Statistics of the datasets from SemEval 2014 Task 4.







• Comparison results

| Methods        | Restaurant                 | Laptop              |
|----------------|----------------------------|---------------------|
| TD-LSTM [24]   | 0.756                      | 0.681               |
| AT-LSTM [29]   | 0.762                      | 0.689               |
| ATAE-LSTM [29] | 0.772                      | 0.687               |
| IAN [12]       | 0.786                      | 0.721               |
| AOA-LSTM       | <b>0.812</b> (0.797±0.008) | 0.745 (0.726±0.008) |

**Table 2.** Comparison results. For our method, we run it 10 times and show "best (mean $\pm$ std)". Performance of these baselines are cited from their original papers.





### **Experiments**



Table 3: Examples of final attention weights for sentences. The color depth denotes the importance degree of the weight in attention vector  $\gamma$ .



- [1] Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and Tiejun Zhao. 2011. Target-dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, pages 151–160.
- [2] Yoshua Bengio, R´ejean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model. Journal of machine learning research 3(Feb):1137–1155.
- [3] Sepp Hochreiter and J<sup>"</sup>urgen Schmidhuber. 1997.Long short-term memory. Neural computation 9(8):1735–1780.
- [4] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. 2017. Attention-over-attention neural networks for reading comprehen-sion. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. pages 593–602.

