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Abstract
We introduce a novel parameterized convo-
lutional neural network for aspect level sen-
timent classification. Using parameterized
filters and parameterized gates, we incorpo-
rate aspect information into convolutional neu-
ral networks (CNN). Experiments demonstrate
that our parameterized filters and parame-
terized gates effectively capture the aspect-
specific features, and our CNN-based mod-
els achieve excellent results on SemEval 2014
datasets.

1 Introduction

Continuous growing of user generated text in so-
cial media platforms such as Twitter drives senti-
ment classification increasingly popular. The goal
of sentiment classification is to detect whether a
piece of text expresses a positive, a negative, or
a neutral sentiment (Rosenthal et al., 2017). The
majority of the literature focuses on general sen-
timent analysis (document level), not involving a
specific topic or entity. When there are multiple
aspects about an entity in a sentence, it is hard to
determine the sentiment as a whole.

Differing from general sentiment classifica-
tion, aspect level sentiment classification identifies
opinions from text about specific entities and their
aspects (Pontiki et al., 2015). For example, given a
sentence “great food but the service was dreadful”,
the sentiment polarity about aspect “food” is pos-
itive while the sentiment polarity about “service”
is negative. If we ignore the aspect information,
it is hard to determine the sentiment for a target
aspect, which accounts for a large portion of sen-
timent classification error (Jiang et al., 2011).

Recently, machine learning based approaches
are becoming popular for this task. Representa-
tive approaches in literature include Support Vec-
tor Machine (SVM) with manually created fea-
tures (Jiang et al., 2011; Wagner et al., 2014) and

neural network based models (Tang et al., 2016;
Wang et al., 2016; Huang et al., 2018). Because of
neural networks’ capacity of learning representa-
tions from data without feature engineering, they
are of growing interest for this natural language
processing task. The mainstream neural meth-
ods are either based on long short-term memory
(Hochreiter and Schmidhuber, 1997) or memory
networks (Sukhbaatar et al., 2015). None of them
are using convolutional neural networks (CNN),
which are good at capturing local patterns.

In the present work, we propose two simple yet
effective convolutional neural networks with as-
pect information incorporated. The overall archi-
tecture differs significantly from previous work.
Specifically, we design two novel neural units that
take target aspects into account. One is parameter-
ized filter, the other is parameterized gate. These
units both are generated from aspect-specific fea-
tures and are further applied on the sentence. Our
experiments show that our two model variants
work surprisingly well on this type of task.

2 Related Work

Aspect level sentiment classification is a branch of
sentiment classification (Pang et al., 2002; Wang
and Manning, 2012). It aims at identifying the
sentiment polarity of one aspect target in a context
sentence.

One typical early work tries to identify the as-
pect level sentiment polarity based on predefined
language rules (Nasukawa and Yi, 2003). Na-
sukawa and Yi first perform dependency parsing
on sentences. Then rules are applied to determine
the sentiment about aspects. Standard machine
learning algorithms like SVM are also widely used
on this task. Jiang et al. create several target-
dependent features, then they feed these target-
dependent features with content features into an



SVM classifier.
In recent years, aspect level sentiment classifi-

cation is dominated by neural network based ap-
proaches. The majority of published works rely
on the architecture of long short-term memory
(LSTM) (Tang et al., 2016). Wang et al. (2016)
use an attention vector generated from aspect em-
bedding to better capture the important parts in
sentences. Tay et al. (2018) introduce a word-
aspect fusion operation to learn associative rela-
tionships between aspects and sentences. Huang
et al. (2018) use an attention-over-attention layer
to further improve the performance.

Another type of neural architectures known as
memory network (Sukhbaatar et al., 2015) has also
been used in this task. Tang et al. (2016) takes an
aspect term as a query sent to external memory.
Their model consists of multiple computational
layers. Each layer is an attention model. One
recent work Dyadic MemNN (Tay et al., 2017)
places associative layers on top of memory net-
works to improve the performance.

The overall architecture in this paper differs sig-
nificantly with all these previous works. To the
best of our knowledge, this paper is the first at-
tempt using convolutional neural networks (Kim,
2014; Huang and Carley, 2017) for aspect level
sentiment classification.

3 Parameterized Convolutional Neural
Networks

In this section, we introduce our method for as-
pect level sentiment classification, which is based
on convolutional neural networks. We first de-
scribe CNN for general sentiment classification,
then we introduce our two model variants Pa-
rameterized Filters for Convolutional Neural Net-
works (PF-CNN) and Parameterized Gated Con-
volutional Neural Networks (PG-CNN).

3.1 Problem Definition

In aspect level sentiment classification, we are
given a sentence s = [w1, w2, ..., wi, ..., wn] and
an aspect target t = [wi, wi+1, ..., wi+m−1]. The
goal is to classify whether the sentiment towards
the aspect in the sentence is positive, negative, or
neutral.

3.2 Convolutional Neural Networks

We first briefly describe convolutional neural net-
works (CNN) for general sentiment classification

(Kim, 2014). Given a sentence s = [w1, w2,
..., wi, ..., wn], let vi ∈ Rk be the word vector for
word wi. A sentence of length n can be repre-
sented as a matrix s = [v1, v2, ..., vn] ∈ Rn×k.
A convolution filter w ∈ Rh×k with width h is
applied to the word matrix to get high-level repre-
sentative features. Specifically, for a word window
vi:i+h−1 ∈ Rh×k, a feature ci is generated by

ci = f(w � vi:i+h−1 + b) (1)

where � represents element-wise product, b ∈ R
is a bias term and f is a non-linear function. Slid-
ing the filter window from the beginning of the
word matrix till the end, we get a feature map
c ∈ Rn−h+1.

c = [c1, c2, ..., cn−h+1] (2)

After that, a pooling operation is applied over the
feature map to get one single general sentiment
feature θg in each map. We use max pooling in
the CNN for sentences.

θg = pooling(c) (3)

We denote this process as θg = CNNg(s;w, b).
Using d such convolutional filters, we can get a
general sentiment feature vector Θg ∈ Rd without
information from aspect terms.

3.3 Parameterized Filters

Standard convolutional neural networks do not
consider information from aspect terms. Herein,
our first model variant overcomes this issue by pa-
rameterizing filters using aspect terms. We call
it Parameterized Filters for Convolutional Neural
Networks (PF-CNN). The overall architecture is
shown in the left of Figure 1.

Formally, given the aspect term with length m,
t = [wi, wi+1, ..., wi+m−1] and the corresponding
embedding matrix t = [vi, vi+1, ..., vi+m−1] ∈
Rm×k, we first use another CNNt to extract one
single feature θt from t.

θt = CNNt(t;wt, bt) (4)

where wt ∈ Rht×k, bt are the convolutional fil-
ter, bias term for CNNt. ht is the width of fil-
ters applied on aspect targets. With hs × k such
filters and bias terms, we can get a feature ma-
trix Θt ∈ Rhs×k, where hs is the filter width ap-
plied on sentences. We use average pooling in the
CNNt for aspects.



Figure 1: The overall architectures of PF-CNN and PG-CNN.

In the next step, Θt is further used as a convolu-
tional filter applied on the sentence.

θs = CNNs(s; Θt, bs) (5)

Using such d parameterized filters, we get the
aspect-specific features Θs ∈ Rd with target term
information. We further concatenate the targeted
feature vector with general sentiment features as
the final classification features Θ = [Θg,Θs].

3.4 Parameterized Gates
The second model variant we designed is called
Parameterized Gated Convolutional Neural Net-
works (PG-CNN). The overall architecture is
shown in the right of Figure 1.

Similar with PF-CNN, PG-CNN also utilizes a
convolutional neural network to extract feature Θt

from aspect terms, which instead is used as a gate
(Dauphin et al., 2017) in the CNN applied on the
sentence. The key step of PG-CNN is described in
equation (6).

ci = (w�vi:i+h−1+b) ·σ(Θt�vi:i+h−1+b) (6)

Instead of using a non-linear function f in equa-
tion (1), we use a gate σ(Θt � vi:i+h−1 + b) to
control how much information passing to the next
layer, where σ(·) is sigmoid function. For each
general filter applied on the sentence, one param-
eterized gate is generated from the aspect.

After that, we generate the final classification
feature Θ in the same way as standard CNN.

3.5 Final Classification
We feed the final classification feature into a lin-
ear layer to project Θ into the space of targeted
classes:

x = Wl ·Θ + bl (7)

where Wl and bl are the weight matrix and bias.
Following the linear layer, we use a softmax layer
to compute the probability of class c.

P (y = c|x) =
exp(xc)∑
i∈C exp(xi)

(8)

3.6 Model training
We train our model to minimize the cross-entropy
loss function with L2 regularization:

loss = −
∑
(s,t)

∑
c∈C

I(y = c)logP (y = c|s, a) + λ||p||2

where I(·) is the indicator function and p is the set
of all parameters in the convolutional layers and
linear layer.

4 Experiments

4.1 Experiments Setting
Dataset
We adopt one widely used dataset from SemEval
2014 Task 4 (Pontiki et al., 2014). It contains two
domain-specific datasets for laptops and restau-
rants. Each data point is a pair of a sentence and
an aspect term. Experienced annotators tagged
each pair with sentiment polarity. Following re-
cent work (Tay et al., 2018), we take 500 train-
ing instances as development set1. Unfortunately,
many works have not mentioned the usage of de-
velopment set (Wang et al., 2016; Ma et al., 2017).
Hyperparameters and Training
We use rectifier as non-linear function f in the
CNNg, CNNt and sigmoid in the CNNs, filter
window sizes of 1, 2, 3, 4 with 100 feature maps

1The splits can be found at
https://github.com/vanzytay/ABSA DevSplits.

https://github.com/vanzytay/ABSA_DevSplits


Dataset Positive Neutral Negative
Laptop-Train 767 373 673
Laptop-Dev 220 87 193
Laptop-Test 341 169 128
Restaurant-Train 1886 531 685
Restaurant-Dev 278 102 120
Restaurant-Test 728 196 196

Table 1: Statistics of the datasets.

Laptops Restaurants
Model 3-way Binary 3-way Binary
TD-LSTM 62.38 79.31 69.73 84.41
AT-LSTM 65.83 78.25 74.37 84.74
ATAE-LSTM 60.34 74.20 70.71 84.52
AF-LSTM 68.81 83.58 75.44 87.78
CNN 68.65 85.50 77.95 89.50
PF-CNN 70.06 86.35 79.20 90.15
PG-CNN 69.12 86.14 78.93 90.58

Table 2: Comparisons results with baselines. We use
accuracy to measure the performance. Performances of
baselines are cited from (Tay et al., 2018).

each, l2 regularization term of 0.001 and mini-
batch size of 25. Parameterized filters and gates
have the same size and number as normal filters.
They are generated uniformly by CNN with win-
dow sizes of 1, 2, 3, 4, eg. among 100 parameter-
ized filters with size 3, 25 of them are generated
by aspect CNN with filter size 1, 2, 3, 4 respec-
tively. The word embeddings are initialized with
300-dimensional Glove vectors (Pennington et al.,
2014) and are fixed during training. For the out
of vocabulary words we initialize them randomly
from uniform distributionU(−0.01, 0.01). We ap-
ply dropout on the final classification features of
PG-CNN. The dropout rate is chosen as 0.3.

Training is done through mini-batch stochastic
gradient descent with Adam update rule (Kingma
and Ba, 2015). The initial learning rate is 0.001.
If the training loss does not drop after every three
epochs, we decrease the learning rate by half. We
adopt early stopping based on the validation loss
on development sets.

4.2 Results

We use accuracy metric to measure the perfor-
mance. To show the effectiveness of our model,
we compare it with several baseline methods. We
list them as follows:

TD-LSTM uses two LSTM networks to model
the preceding and following contexts surrounding

the aspect term. The last hidden states of these
two LSTM networks are concatenated for predict-
ing the sentiment polarity (Tang et al., 2016).

AT-LSTM combines the sentence hidden states
from a LSTM with the aspect term embedding to
generate the attention vector. The final sentence
representation is the weighted sum of the hidden
states (Wang et al., 2016).

ATAE-LSTM further extends AT-LSTM by ap-
pending the aspect embedding into each word vec-
tor (Wang et al., 2016).

AF-LSTM introduces a word-aspect fusion at-
tention to learn associative relationships between
aspect and context words (Tay et al., 2018).

CNN uses the architecture proposed in (Kim,
2014) without explicitly considering aspect. We
use filter window sizes of 1,2,3,4 with 100 maps
each. Dropout rate is chosen as 0.5. Early stop-
ping based on validation accuracy is applied.

Our two models achieve the best performance
when compared to these baselines as shown in
Table 2, which shows that our proposed neural
units effectively captures the aspect-specific fea-
tures. Compared to one recently proposed model
AF-LSTM, our method achieve 2%-5% improve-
ments. Surprisingly, a vanilla CNN works quite
well on this problem. It even beats these well-
designed LSTM models, which further proves that
using CNN-based methods is a direction worth ex-
ploring.

4.3 Case Study & Discussion

Compared to a vanilla CNN, our two model vari-
ants could successfully distinguish the describing
words for corresponding aspect targets. In the sen-
tence “the appetizers are ok, but the service is
slow”, a vanilla CNN outputs the same negative
sentiment label for both aspect terms “appetizers”
and “service”, while PF-CNN and PG-CNN suc-
cessfully recognize that “slow” is only used for
describing “service” and output neutral and neg-
ative labels for aspects “appetizers” and “service”
respectively. In another example “the staff mem-
bers are extremely friendly and even replaced my
drink once when i dropped it outside”, our models
also find out that positive and neutral sentiment for
“staff” and “drink” respectively.

One thing we notice in our experiment is that a
vanilla CNN ignoring aspects has comparable per-
formance with some well-designed LSTM models
in this aspect-level sentiment classification task.



For a sentence containing multiple aspects, we as-
sume the majority of the aspect-level sentiment la-
bel is the sentence-level sentiment label. Using
this labeling scheme, in the restaurant data, 1034
out of 1117 test points have the same sentence-
level and aspect-level labels. Thus, a sentence-
level classifier with accuracy 75% also classifies
70% aspect-labels correctly. A similar observation
was made for the laptop dataset as well. Probably
this is the reason why a vanilla CNN has compara-
ble performance on these two datasets. For future
research, a more balanced dataset would be help-
ful to overcome this issue.

5 Conclusion

We propose a novel method for aspect level senti-
ment classification. We introduce two novel neu-
ral units called parameterized filter and parameter-
ized gate to incorporate aspect information into the
convolutional neural network architecture. Com-
parisons with baseline methods show our model
effectively learns the aspect-specific sentiment ex-
pressions. Our experiments demonstrate a signif-
icant improvement compared to multiple strong
neural baselines.

To the best of our knowledge, our model is the
first attempt using convolutional neural networks
solving this problem. We hope this work could in-
spire future research exploring in this direction. It
is also interesting to see whether such parameter-
ized CNN architecture could benefit other natural
language processing tasks involving text pairs like
question answering task.
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