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Introduction

e Why we care about online users’ location?
— Understand online user’s opinion across different regions.
— A typical example is US president election: we are interested in the regional user opinion.

Understanding what regional
online users are doing or
thinking requires location
information for each user.

https://www.nytimes.com/elections/results/ pre§ident
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Introduction

o Twitter has become a popular platform for researchers studying social
phenomenon.

e A common way for researcher collecting Twitter data is using Twitter’s
streaming API[3]

— Following users
— Following terms

— Following Geo-bounding boxes. As reported in [4], less than 1% of tweets contain
structured geolocation information.

e Using a geo-bounding box means we will lose the majority of information.
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Introduction

e Task: predict user’s location from public accessible information in one single
tweet.

Tweets Following Followers Likes

55 63 20

SBP BRiMS Conference Tweets

. . SBP BRiIMS Conference @SBP_BRIMS - Jan 13
International Conference on Social

) ) CONFERENCE ANNOUNCEMENT: Dates for the 2017 conference
Computing, Behavioral-Cultural ) i )

) o ) will now be July 5-8. The conference will remain at
Modeling, & Prediction and Behavior

Representation in Modeling and
\2mulatlon This Tweet is unavailable.
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Useful Features in Tweet Json

~ Tweet content

Personal description in user’s profile

o Text features— o _
Location in user’s profile

Username

~—

Tweet language(TL)

0.014

User language in user’s profile(UL)

0.012 -

e (Categorical features—

0.010 -

User timezone in user’s profile(TZ)

__ Postingtime(PT) ~——— 2 |
“s 0.002
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0.008

0.006

Probability of posting tweets
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Tweet Location Prediction Architecture
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|@@F Word embedding

1. Each word is represented by a vector.

2. Concatenating the word embedding vectors,
we got the text representation
Xlt:n T xleBxZ69 69xnl

t € {content, description, profile location,username}

3. In the conv. layer, there are m filters
with size h that extracts useful features
from texts.
= f(w-Xfign_q +b), where f(x) =
max(x, 0)

Convolutional layer Max-pooling layer  Fully connected layer Architecture is based on [1]
© 2017 CASOS, Director Kathleen M. Carley 9



Carnegie Mellon
=

ttttttttttt
IS r S
sssssss

t
Xl:n

Content

Description

Profile location

User name

Igs

Hp;

o =
A

=l L
N uL

_: T2

ull PT

- 0

%F- Word embedding

"Tweet Location Prediction Architecture

3. Max-pooling layer selects the most
representative features generated by each
filter in the convolutional layer.

At _ t .t t
¢" = max(c{,C5, ) Cn_pi1

4. Assume there are m convolutional filters,
then we can get a feature vector 9 € R*™
which is appended by TL, UL, TZ and PT.

5. The probability of one tweet coming
from location [; is

~ _ exp(BT9)
PUID) = 5 ce75)

Convolutional layer Max-pooling layer  Fully connected layer
© 2017 CASOS, Director Kathleen M. Carley 10
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Tweet Location Prediction Architecture

e Cross entropy Loss
L = — I1(l; = k)logP(l; = k|x;)
Z ZR:

i

e Using gradient descent minimize the loss function with respect to:
— The word vector for all the words

— Parameter wand b in the convolutional layer.
— Parameter g in the fully connected layer.

508
cASOS
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e EXxperiments:
— Country-level prediction
— City-level prediction
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Experiments

o Data collection: geo-tagged tweets from geo-bounding box [-180, -90, 180,
90] from Jan. 7, 2017 to Feb. 1, 2017.

# of # of |# of # of |# of countries| Tweets per # of | Tweets per
tweets | users |timezones|lang.|(or regions) country cities| city
4645692(3321194| 417 103 243 19118.0 (99697.1)|3709 [1252.5(4184.5)

e We randomly selected one tweet for each user-city pair.

e We used 10% users as testing data, 90% users for training. We picked
50000 users in training data as development set to tune hyperparameter.

© 2017 CASOS, Director Kathleen M. Carley
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Country-level prediction

T
Each geo-tagged tweet has a 1.1 . .
“country_code” field. Us TR
1.0} n ) \. ) ‘..
Table 3. Country prediction results. 4| \\, o °
Acc |Acc@Topb g 08 . CA\ )
STACKINGI2]|0.868 (0.947 ol A
STACKING+|0.871 (0.950
Our approach|0.921(0.972 oer
0.5 ' ' L ! !
0.70 0.75 0.80 0.85 0.90 0.95 1.00
Precision
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City-level prediction

e Target cities: 3709 cities selected based on population[2]

n M. Carley
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City-level prediction
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City-level prediction

= Acc@161: The percentage of predicted
city which are within a 161km(100 mile)
radius of the true coordinates of original

tweet

= Median: The median distance from the

1.0}

predicted city to the true coordinates E “or
0.4}
Table 4. City prediction results.
Acc |Acc@l161|Acc@QTopb|Median
STACKING (0.389 [0.573 0.595 77.5 km
STACKING+0.439 [0.616 0.629 47.2 km
(|Our approach|0.528(0.692 [0.711 28.0 km

1|ﬂll‘
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1. We get 97.2% accuracy for country-level prediction with output probability larger
than 0.9.

2. Surprisingly, the accuracy of city-level is as high as 92.7% for the 29.6% of the
tweets with output Probability greater than 0.9.

Coun Git
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: Y 0.10 0.170 ]
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A case study on an Ukraine data

Before prediction
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e Data is collected on Twitter by a keyword search. There are 18297 tweets in
total and 292 of them are geo-tagged
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Heatmap of tweets

After location prediction

Before location prediction
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Thank you!
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